P.R.GOVT.COLLEGE (AUTONOMOUS), KAKINADA III B.Sc. MATHEMATICS - Semester V (w.e.f. 2018-2019) Course: Ring Theory & Vector Calculus

Total Hrs. of Teaching-Learning: 45 @ 3 hr/Week

Total credits: 3

Objectives:

To impart knowledge on Ring Theory and its applications.

To make awareness of the concepts of the transformation between line Integral, Surface Integral and Volume integral.

To introduce the concepts of geometrical meaning of Gradient, Divergence and Curl.

Unit - I: Rings - I

(11 hrs)

Definition of Ring and basic properties, Boolean Rings, divisors of zero and cancellation laws in Rings, Integral Domain, Division Ring and Fields, The characteristic of a ring - The characteristic of an Integral Domain, the characteristic of a Field, Sub rings and Ideals.

Unit - II: Rings - II

(11 hrs)

Definition of Homomorphism - Homomorphic Image - Elementary Properties of Homomorphism - Kernel of a Homomorphism - Fundamental Theorem of Homomorphism -Maximal Ideals - Prime Ideals.

VECTOR CALCULUS

UNIT:III. Vector differentiation

(9 hrs)

Vector differentiation -Ordinary Derivatives of Vector valued functions, Continuity and Differentiation, Gradient, Divergence, Curl operators, Formulae involving these operators.

UNIT: IV. Vector integration:

(7 hrs)

Line Integral, Surface Integral, Volume Integrals with examples.

Unit - V: Vector Integration Applications:

(7 hrs)

Gauss Divergence Theorem, Stokes theorem, Green's Theorem in plane and applications of these

Additional Inputs: Euclidean Ring definition and Examples.

Prescribed text Book:

A text book of Mathematics, Vol. III, S. Chand & Co.

Books for Reference:

1. Topics in Algebra by I.N.Herstine

2. Abstract Algebra by J. Fralieh, Published by Narosa Publishing house

- 3. Vector Calculus by Santhi Narayan, Published by S.Chand & Company Pvt. Ltd., New
- 4. Vector Calculus by R.Gupta, Published by Laxmi Publications.

BLUE PRINT FOR QUESTION PAPER PATTERN

SEMESTER-V, PAPER V

Unit	TOPIC	V.S.A.Q	S.A.Q(including choice)	E.Q(including choice)	Total Mark
I	Rings – I	02	03	01	25
ш	Rings – II	02	02	O2	28
III	Vector differentiation	02	02	01	to
IV	Vector integration	01	02	01	19
V	Vector Integration Applications	01_	01	01	145
TOTAL		08	10	06	106

E.Q = Essay questions (8 marks) S.A.Q = Short answer questions (5 marks) V.S.A.Q = Very Short answer questions (1 mark)

Essay questions : 4x8M = 32Short answer questions : 5x6M = 30Very Short answer questions : 8x1M = 08

Total Marks : 70

P.R.Government College (Autonomous), Kakinada III year B.Sc., Degree Examinations V Semester Mathematics: Ring Theory & Vector Calculus Paper-V (Model Paper w. e. f. 2018-2019)

Max. marks: 70M Time: 3 hours

PART -I

Answer all the following questions. Each question carries 1 mark.

8x1M = 8M

1. Define Boolean Ring.

2. Write the zero divisors of $(Z_9, +_9, X_9)$.

3. Find Kernel of the Homomorphism $f: Z(\sqrt{2}) \to Z(\sqrt{2})$ defined by $f(m+n\sqrt{2})=m-n\sqrt{2} \ \forall \ m+n\sqrt{2} \ \in Z(\sqrt{2}).$

4. Give an example to show that every prime ideal need not be a maximal ideal.

Find div f, where $f = grad(x^3 + y^3 + z^3 - 3xyz)$

6. Evaluate
$$\int_{0}^{1} (e^{t} \overline{i} + e^{-2t} \overline{j}) dt$$

- 7. State Green's theorem
- 8. State the Green's Identities.

PART -II

Answer any THREE questions from each section. Each question carries 5 marks. 6x5M = 30M

SECTION - A

- Show that a ring R has no zero divisors if and only if the cancellation laws hold in R.
- 10. Prove that the intersection of two ideals of a Ring R is an ideal of R.
- 11. Prove that a commutative ring R with unity having no proper ideals is a field.
- 12. Let R and R' be two rings and $f: R \to R'$ be a homomorphism. Then prove that the Kernel of f is an ideal of R.
- 13. Let C be the ring of Complex numbers and M₂(R) be the ring of 2 x 2 matrices. If $f: C \to M_2(R)$ is defined by $f(a + ib) = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ then prove that f is an into isomorphism and also find ker f.

SECTION - B

- 14. Find the directional derivative of $\phi = xy + yz + zx$ at A in the direction of \overline{AB} , Where A = (1,2,-1), B = (-1,2,3)
- 15. Prove that div Curl $\overline{f} = 0$
- 16. If $\overline{F} = y\overline{i} + z\overline{j} + x\overline{k}$, find the circulation of F round the curve, C where C is

the Circle $x^2 + y^2 = 1, z = 0$.

- 17. Evaluate $\int_{V} FdV$ when $F = x\overline{i} + y\overline{j} + z\overline{k}$ and V is the region bounded by x=0,y=0,y=6,z=4 and $z=x^2$.
- 18. Evaluate $\oint_C (\cos x \cdot \sin y xy) dx + \sin x \cdot \cos y dy$, by Green's theorem, where C is the circle $x^2 + y^2 = 1$.

PART-III

Answer any FOUR questions from the following by choosing at least ONE from each section. Each question carries 8 marks.

4X8M=32M

SECTION - C

- 19. Define the characteristic of a ring. Prove that the characteristic of an integral domain is either a prime or zero.
- 20. State and Prove fundamental theorem of homomorphism in rings.
- 21. Show that an ideal U of a commutative ring R with unity is maximal if and only if the quotient ring R/U is a field.

SECTION - D

- 22. Prove that $\nabla \times (\nabla \times A) = \nabla(\nabla A) \nabla^2 A$
- 23. Evaluate $\int_S F.N \, dS$, where $F = zi + xj 3y^2zk$ and S is the surface $x^2 + y^2 = 16$ included in the first octant between z = 0 and z = 5.
- 24. If $F = 4xz\overline{i} y^2\overline{j} + yz\overline{k}find\int_s F.Nds$ by divergence theorem where S is surface of the cube bounded by x = 0, x=1, y=0, y=1, z=0, z=1.
